

PET-MR imaging of Tau and synaptic density in prodromal Alzheimer's disease

H. Vanhaute¹, J. Ceccarini¹, L. Michiels^{1,2}, M. Koole¹, S. Sunaert³, L. Emsell³,
R. Lemmens², M. Vandenbulcke⁴, K. Van Laere¹

¹ Nuclear Medicine, Department of Imaging and Pathology, ²Department of Neurology, ³Department of Translational MRI, ⁴Department of Old Age Psychiatry

University Hospitals Leuven and KU Leuven, Belgium

Global burden of dementia

One every 3 seconds

KU LEUVEN

Alzheimer's disease international

The quest for biomarkers in AD...

ATN-research framework

Earlier findings in (prodromal) AD: in vitro

Adapted from: Braak and Braak 1991, Scheff ea 2015

Promising PET tracers

PET(-MR) scan

Promising PET tracers

Earlier findings in (prodromal) AD: in vivo

TAU-PET in MCI/AD

Earlier findings in (prodromal) AD: in vivo

¹¹C-UCB-J in MCI/AD

Hippocampal loss of SV2A

Cognitively normal	Participants	Participants	Participants
participants	with MCI	with AD	with AD/MCI

Study objective

Study objective

Study design

Methodology: data acquisition

Methodology: data acquisition

Results: characteristics

	HC (n=10)	aMCI (n=10)
Sex		
M/F	5/5	6/4
Age, years	67·2 (±6·5)	69.6 (±5.4)
MMSE score	29·4 (±0·8)	24·3 (±1·8)
RAVLT		
Total: sum trial 1-5 (0-75)	55·2 (±7·4)	26·3 (±7·3)
Delayed recall (0-15)	12·3(±2·3)	2.6 (±2.1)
GDS (0-30)	3·4 (±2·8)	7.7 (±7.8)
BDI (0-63)	4·3 (±3·5)	6·0 (±7·8)
Amyloid positive PET scan	1/10	9/10
Injected dose in MBq		
¹¹ C-PIB	214·0 (±38·2)	176·1 (±46·7)
¹¹ C-UCB-J	237·2 (±60·6)	200·4 (±85·8)
¹⁸ F-MK-6240	131·5 (±29·1)	153·4 (±13·5)

Results: representative SUVR ¹¹C-UCB-J and ¹⁸F-MK-6240

Results: decreased SV2A and increased tau

Results: SV2A/Tau correlation in MTL

Results: correlations hippocampal Tau/SV2A and cognitive outcome measures

MMSE

RAVLT (Episodic memory)

Discussion

- Increased tau-deposition was seen in aMCI in the MTL and adjacent association cortex (Braak II-IV)
 - Correlations were seen with decreased performance on cognitive tests
 - Hippocampus allows for discrimination between HC and aMCI
- SV2A-PET findings correspond to previous research
 - Hippocampus as most prominent region of synapse loss, correlating with cognitive decline

Discussion

- In the MTL an increase of NFT is inversely related to loss of synaptic density confirming in vitro findings
- Tau deposition seems more widespread as compared to synapse loss
 - Pathological Tau as key driver of loss of synaptic function
 - Dynamic synaptic reorganization
 - Specific target of both tracers

Conclusion

- Preliminary evidence linking an increased Tau deposition to a loss of synaptic density in vivo in the MTL
- Longitudinal SV2A/Tau-PET imaging in prodromal AD is needed to acquire temporal information on the relation of AD hallmarks
- **Future goal**: identify an optimal, simplified combination of PET-MR imaging biomarkers for early assessment and/or risk stratification in de novo patients

Thank you for your attention

- Nuclear Medicine
 - K. Van Laere, MD, PhD, DSc
 - J. Ceccarini, Ir, PhD
 - M. Koole, DSc, PhD
 - L. Michiels, MD
 - J. Van Aalst
 - D. Van Weehaeghe, MD
 - N. Mertens, MSc
- Radiology
 - S. Sunaert, MD PhD
 - L. Emsell, PhD

- Neurology
 - L.Michiels, MD
 - R. Lemmens, MD, PhD
- Old age psychiatry
 - M. Vandenbulcke, MD, PhD

Stichting Alzheimer Onderzoek

Onderzoek geeft hoop!

Additional slides

Voxel based morphometry (VBM)

Correlations hippocampal tau/SV2A and cognitive outcome measures: aMCI group

